文献

101. McGoon M, Gutterman D, Steen V, et al. Screening, early detection, and diagnosis of pulmonary arterial hypertension. ACCP evidence-based clinical
        practice guidelines. Chest 2004; 126 (1 Suppl): 14S-34S.
102. 心筋症調査研究班編.心筋症:診断の手引きとその解説.2005.
103. Richardson P, McKenna W, Bristow M, et al. Report of the 1995 World Health Organization/Internal Society and Federation of Cardiology Task Force
        on the definition and classification of cardiomy-opathies. Circulation 1996; 93: 841-842.
104. Maron BJ, Towbin JA, Thiene G, et al. Contemporary definitions and classification of the cardiomyopathies: an American Heart Association Scientific
        Statement from the Council on Clinical Cardiology, Heart Failure and Transplantation Committee; Quality of Care and Outcomes Research and
        Functional Genomics and Translational Biology Interdisciplinary Working Groups; and Council on Epidemiology and Prevention. Circulation 2006; 113:
        1807-1816.
105. Seidman JG, Seidman C. The genetic basis for cardiomyopathy: From mutation identification to mechanistic paradigms. Cell 2001; 104: 557-567.
106. 今井靖,他.循環器疾患の遺伝子研究.日本内科学会雑誌 2002; 91: 832-837.
107. 松森昭,他.心筋症における C 型肝炎ウイルス感染の意義.特発性心筋症調査研究班平成 9 年度研究報告集.1998: 9-11.
108. 品川達夫, 他. 心筋症の生検心筋標本におけるcoxsackievirus 増殖の検討.特発性心筋症調査研究班平成9 年度研究報告集.1996: 105-109.
109. Watkins H, McKenna WJ, Thierfelder L, et al. Mutations in the genes for cardiac troponin T and alpha-tropomyosin in hypertrophic cardiomyopathy.
        N Engl J Med 1995; 332; 1058-1064.
110. Kimura A, Harada H, Park JE, et al. Mutations in the cardiac troponin I gene associated with hypertrophic cardiomyopathy. Nat Genet 1997; 16: 379-
        382.
111. Satoh M, Takahashi M, Sakamoto T, et al. Structural analysis of the titin gene in hypertrophic cardiomyopathy: identification of a novel disease gene.
        Biochem Biophys Res Commun 1999 27; 262: 411-417.
112. Danieli GA, Rampazzo A. Genetics of arrhythmogenic right ventricular cardiomyopathy. Curr Opin Cardiol 2002; 17: 218-221.
113. Rampazzo A, Nava A, Danieli GA, et al. The gene for arrhythmogenic right ventricular cardiomyopathy maps to chromosome 14q23-q24. Hum Mol
        Genet 1994; 3: 959-962.
114. Rampazzo A, Nava A, Erne P, et al. A new locus for arrhythmogenic right ventricular cardiomyopathy (ARVD2) maps to chromosome 1q42-q43. Hum
        Mol Genet 1995 ; 4: 2151-2154.
115. Severini GM, Krajinovic M, Pinamonti B, et al. A new locus for arrhythmogenic right ventricular dysplasia on the long arm of chromosome 14.
        Genomics 1996; 31: 193-200.
116. Rampazzo A, Nava A, Miorin M, et al. ARVD4, a new locus for arrhythmogenic right ventricular cardiomyopathy, maps to chromosome 2 long arm.
        Genomics 1997; 45: 259-263.
117. Ahmad F, Li D, Karibe A, et al. Localization of a gene responsible for arrhythmogenic right ventricular dysplasia to chromosome 3p23. Circulation
        1998; 98: 2791-2795.
118. Melberg A, Oldfors A, Blomstrom-Lundqvist C, et al. Autosomal dominant myofibrillar myopathy with arrhythmogenic right ventricular cardiomyopathy
        linked to chromosome 10q. Ann Neurol 1999; 46: 684-692.
119. Rampazzo A, Nava A, Malacrida S, et al. Mutation in human desmoplakin domain binding to plakoglobin causes a dominant form of arrhythmogenic
        right ventricular cardiomyopathy. Am J Hum Genet 2002 ; 71: 1200-1206.
120. Gerull B, Heuser A, Wichter T, et al. Mutations in the desmosomal protein plakophilin-2 are common in arrhythmogenic right ventricular
        cardiomyopathy. Nat Genet 2004: 36: 1162-1164.
121. Thiene G, Corrado D, Nava A, et al. Right ventricular cardiomyopathy: is there evidence of an inflammatory aetiology? Eur Heart J 1991; 12 Suppl
        D: 22-25.
122. Klaassen S, Probst S, Oechslin E, et al. Mutations in sarcomere protein genes in left ventricular noncompaction. Circulation 2008; 117: 2893-2901.
123. Santorelli FM, Tessa A, D’Amati G, et al. The emerging concept of mitochondrial cardiomyopathies. Am Heart J 2001; 141: E1.
124. Tanaka M, Ino H, Ohno K, et al. Mitochondrial mutation in fatal infantile cardiomyopathy. Lancet 1990; 336: 1452.
125. 田中雅嗣.ミトコンドリア心筋症.日本臨床増刊号「ミトコンドリアとミトコンドリア病」2002: 306-311.
126. 田中雅嗣,米田誠.ミトコンドリア心筋症. 単行本「心不全」(編集: 篠山重威).医薬ジャーナル社,大阪.
127. Frustaci A, Chimenti C, Ricci R, et al. Improvement in cardiac function in the cardiac variant of Fabry’s disease with galactose-infusion therapy.
        N Engl J Med 2001; 345: 25-32.
128. Nakao S, Takenaka T, Maeda M, et al. An atypical variant of Fabry’s disease in men with left ventricular hypertrophy. N Engl J Med 1995; 333:
        288-293.
129. Von Scheidt W, Eng CM, Fitzmaurice TF, et al. An atypical variant of Fabry’s disease with manifestations confined to the myocardium.
        N Engl J Med 1991; 324: 395-399.
130. Sachdev B, Takenaka T, Teraguchi H, et al. Prevalence of Anderson-Fabry disease in male patients with late onset hypertrophic cardiomyopathy.
        Circulation 2002; 105: 1407-1411.
131. Yang Z, McMahon CJ, Smith LR, et al. Danon disease as an underrecognized cause of hypertrophic cardiomyopathy in children. Circulation 2005;
        112: 1612-1617.
132. Chen Y-T. Glycogen storage diseases. In Scriver CR, Beaudet AL, Sly WA, Valle D (eds): The Metabolic and Molecular Bases of Inherited Disease.
        8th ed. New York, McGraw-Hill, 2001: 1521-1552.
133. Van Hove JLK, Wevers RA, Van Cleemput J, et al. Lateonset visceral presentation with cardiomyopathy and without neurological symptoms of adult
        Sanfilippo A syndrome. Am J Med Genet A 2003; 118A: 382-387.
134. Roe CR, Ding J. Mitochondrial fatty acid oxidation disorders. In Scriver CR, Beaudet AL, Sly WA, Valle D (eds): The Metabolic and Molecular Bases
        of Inherited Disease. 8th ed. New York, McGraw-Hill 2001: 2297-2326.
135. Olynyk JK, Cullen DJ, Aquilia S, et al. A population-based study of the clinical expression of the hemochromatosis gene. N Engl J Med 1999; 341:
        718-724.
136. Ortiz-Lopez R, Li H, Su J, et al. Evidence for a dystrophin missense mutation as a cause of X-linked dilated cardiomyopathy. Circulation 1997; 95:
        2434-2440.
137. Musante L, Kehl HG, Majewski F, et al. Spectrum of mutations in PTPN11 and genotype-phenotype correlation in 96 patients with Noonan syndrome
        and five patients with cardiofacio-cutaneous syndrome. Eur J Hum Genet 2003; 11: 201-206.
138. Chien KR. Genotype, phenotype: Upstairs, downstairs in the family of cardiomyopathies. J Clin Invest 2003; 111: 175-178.
139. Braunwald E (eds). Heart Disease. 8th ed. Philadelphia, Elsevier Saunders 2008: 111-117.
140. Braunwald E (eds). Heart Disease. 7th ed. Philadelphia, Elsevier Saunders 2005: 1869-1894.
141. Keating MT, Sanguinetti MC. Molecular and cellular mechanisms of cardiac arrhythmias. Cell 2001; 104: 569-580. 142. Moss AJ. Long QT Syndrome.
        JAMA 2003; 289: 2041-2044.
143. Kass RS, Moss AJ. Long QT syndrome: novel insights into the mechanisms of cardiac arrhythmias. J Clin Invest 2003; 112: 810-815.
144. Mohler PJ, Splawski I, Napolitano C, et al. A cardiac arrhythmia syndrome caused by loss of ankyrin-B function. Proc Natl Acad Sci U S A. 2004;
        101: 9137-9142.
145. Andersen ED, Krasilnikoff PA, Overvad H. Intermittent muscular weakness, extra systoles, and multiple developmental anomalies. A new syndrome?
        Acta Paediatr Scand. 1971; 60: 559-564.
146. Plaster NM, Tawil R, Tristani-Firouzi M, et al. Mutations in Kir2.1 cause the developmental and episodic electrical phenotypes of Andersen’s
        syndrome. Cell 2001; 105: 511-519.
147. Donaldson MR, Yoon G, Fu YH, et al. Andersen-Tawil syndrome: a model of clinical variability, pleiotropy, and genetic heterogeneity. Ann Med 2004;
        36 (Suppl 1): 92-97.
148. Fodstad H, Swan H, Auberson M, et al. Loss-of-function mutations of the K (+) channel gene KCNJ2 constitute a rare cause of long QT syndrome.
        J Mol Cell Cardiol 2004; 37: 593-602.
149. Splawski I, Timothy KW, Sharpe LM, et al. Ca (V)1.2 calcium channel dysfunction causes a multisystem disorder including arrhythmia and autism.
        Cell 2004; 119: 19-31.
150. Napolitano C, Bloise R, Priori SG. Gene-specific therapy for inherited arrhythmogenic diseases. Pharmacol Ther 2005.
151. Splawski I, Shen J, Timothy KW, et al. Spectrum of mutations in long-QT syndrome genes. KVLQT1, HERG, SCN5A, KCNE1, and KCNE2.
        Circulation 2000; 102: 1178-1185.
152. Priori SG, Schwartz PJ, Napolitano C, et al. Risk stratification in the long-QT syndrome. N Engl J Med.2003; 348: 1866-1874.
153. Hiraoka M. Inherited arrhythmic disorders in Japan. J Cardiovasc Electrophysiol 2003; 14: 431-434.
154. Tester DJ, Will ML, Haglund CM, et al. Compendium of cardiac channel mutations in 541 consecutive unrelated patients referred for long QT syndrome
        genetic testing. Heart Rhythm 2005; 2: 507-517.
155. Moss AJ, Zareba W, Benhorin J, et al. ECG T-wave patterns in genetically distinct forms of the hereditary long QT syndrome. Circulation 1995; 92:
        2929-2934.
156. Zhang L, Timothy KW, Vincent GM, et al. Spectrum of STT-wave patterns and repolarization parameters in congenital long-QT syndrome: ECG
        findings identify genotypes. Circulation 2000; 102: 2849-2855.
157. Dausse E, Berthet M, Denjoy I, et al. A mutation in HERG associated with notched T waves in long QT syndrome. J Mol Cell Cardiol 1996; 28: 1609-
        1615.
158. Malfatto G, Beria G, Sala S, et al. Quantitative analysis of T wave abnormalities and their prognostic implications in the idiopathic long QT syndrome.
        J Am Coll Cardiol 1994; 23: 296-301.
159. Schwartz PJ, Priori SG, Spazzolini C, et al. Genotypephenotype correlation in the long-QT syndrome: gene-specific triggers for life-threatening
        arrhythmias. Circulation 2001; 103: 89-95.
160. Sakaguchi T, Shimizu W, Itoh H, et al. Age- and genotypespecific triggers for life-threatening arrhythmia in the genotyped long QT syndrome.
        J Cardiovasc Electrophysiol 2008; 19: 794-799.
161. Shimizu W, Horie M, Ohno S, et al. Mutation site-specific differences in arrhythmic risk and sensitivity to sympathetic stimulation in the LQT1 form of
        congenital long QT syndrome: Multicenter study in Japan. J Am Coll Cardiol 2004; 44: 117-125.
162. Moss AJ, Shimizu W, Wilde AA, et al. Clinical aspects of type-1 long-QT syndrome by location, coding type, and biophysical function of mutations
        involving the KCNQ1 gene. Circulation 2007; 115: 2481-2489.
163. Shimizu W, Moss AJ, Wilde AA, et al. Genotype-phenotype aspects of type 2 long QT syndrome. J Am Coll Cardiol 2009; 54: 2052-2062.
164. Priori SG, Napolitano C, Schwartz PJ. Low penetrance in the long-QT syndrome: clinical impact. Circulation 1999; 99: 529-533.
165. Schwartz PJ, Priori SG, Locati EH, et al. Long QT syndrome patients with mutations of the SCN5A and HERG genes have differential responses to
        Na+ channel blockade and to increases in heart rate. Implications for gene-specific therapy. Circulation 1995; 92: 3381-3386.
166. Shimizu W. The long QT syndrome: Therapeutic implications of a genetic diagnosis. Cardiovasc Res 2005; 67: 347-356.
167. Compton SJ, Lux RL, Ramsey MR, et al. Genetically defined therapy of inherited long-QT syndrome. Correction of abnormal repolarization by
        potassium. Circulation 1996; 94: 1018-1022.
168. Priori SG, Napolitano C, Schwartz PJ, et al. The elusive link between LQT3 and Brugada syndrome: the role of flecainide challenge. Circulation 2000;
        102: 945-947.
169. Priori SG, Napolitano C, Schwartz PJ, et al. Association of long QT syndrome loci and cardiac events among patients treated with beta-blockers.
        JAMA 2004; 292: 1341-1344.
170. Gouas L, Bellocq C, Berthet M, et al. New KCNQ1 mutations leading to haploinsufficiency in a general population; Defective trafficking of a KvLQT1
        mutant. Cardiovasc Res 2004; 63: 60-68.
171. Zhou Z, Gong Q, Epstein ML, et al. HERG channel dysfunc-tion in human long QT syndrome. Intracellular transport and functional defects. J Biol
        Chem 1998; 273: 21061-21066.
172. Donger C, Denjoy I, Berthet M, et al. KVLQT1 C-terminal missense mutation causes a forme fruste long-QT syndrome. Circulation 1997; 96: 2778-
        2781.
173. Napolitano C, Schwartz PJ, Brown AM, et al. Evidence for a cardiac ion channel mutation underlying drug-induced QT prolongation and life-threatening
        arrhythmias. J Cardiovasc Electrophysiol 2000; 11: 691-696.
174. Piippo K, Holmstrom S, Swan H, et al. Effect of the antimalarial drug halofantrine in the long QT syndrome due to a mutation of the cardiac sodium
        channel gene SCN5A. Am J Cardiol 2001; 87: 909-911.
175. Sesti F, Abbott GW, Wei J, et al. A common polymorphism associated with antibiotic-induced cardiac arrhythmia. Proc Natl Acad Sci U S A 2000;
        97: 10613-10618.
176. Kubota T, Shimizu W, Kamakura S, et al. Hypokalemiainduced long QT syndrome with an underlying novel missense mutation in S4-S5 linker of
        KCNQ1. J Cardiovasc Electrophysiol 2000; 11: 1048-1054.
177. Yoshida H, Horie M, Otani H, et al. Bradycardia-induced long QT syndrome caused by a de novo missense mutation in the S2-S3 inner loop of HERG.
        Am J Med Genet 2001; 98: 348-352.
178. Roden DM. Pharmacogenet ics and drug- induced arrhythmias. Cardiovasc Res 2001; 50: 224-231.
179. Brugada P, Brugada J. Right bundle branch block, persistent ST segment elevation and sudden cardiac death: a distinct clinical and
        electrocardiographic syndrome. A multicenter report. J Am Coll Cardiol 1992; 20: 1391-1396.
180. Antzelevitch C, Brugada P, Borggrefe M, et al. Brugada syndrome: report of the second consensus conference: endorsed by the Heart Rhythm
        Society and the European Heart Rhythm Association. Circulation 2005; 111: 659-670.
181. Wilde AA, Antzelevitch C, Borggrefe M, et al. Proposed diagnostic criteria for the Brugada syndrome: consensus report. Circulation 2002; 106:
        2514-2519.
182. Chen Q, Kirsch GE, Zhang D, et al. Genetic basis and molecular mechanism for idiopathic ventricular fibrillation. Nature 1998; 392: 293-296.
183. Antzelevitch C, Yan GX, Shimizu W. Transmural dispersion of repolarization and arrhythmogenicity: the Brugada syndrome versus the long QT
        syndrome. J Electrocardiol 1999; 32 (Suppl): 158-165.
184. Nademanee K, Veerakul G, Nimmannit S, et al. Arrhythmogenic marker for the sudden unexplained death syndrome in Thai men. Circulation 1997;
        96: 2595-2600.
185. Miyasaka Y, Tsuji H, Yamada K, et al. Prevalence and mortality of the Brugada-type electrocardiogram in one city in Japan. J Am Coll Cardiol 2001;
        38: 771-774.
186. Brugada J, Brugada R, Brugada P. Right bundle-branch block and ST-segment elevation in leads V1 through V3: a marker for sudden death in patients
        without demonstrable structural heart disease. Circulation 1998; 97: 457-460.
187. Priori SG, Napolitano C, Gasparini M, et al. Natural history of Brugada syndrome: insights for risk stratification and manage-ment. Circulation 2002;
        105: 1342-1347.
188. Atarashi H, Ogawa S, Harumi K, et al. Three-year followup of patients with right bundle branch block and st segment elevation in the right precordial
        leads: Japanese registry of brugada syndrome. Idiopathic ventricular fibrillation investigators. J Am Coll Cardiol 2001; 37: 1916-1920.
189. Ikeda T, Sakurada H, Sakabe K, et al. Assessment of noninvasive markers in identifying patients at risk in the Brugada syndrome: insight into risk
        stratification. J Am Coll Cardiol 2001; 37: 1628-1634.
190. Atarashi H, Ogawa S. New ECG criteria for high-risk Brugada syndrome. Circ J 2003; 67: 8-10.
191. Morita H, Takenaka-Morita S, Fukushima-Kusano K, et al. Risk stratification for asymptomatic patients with Brugada syndrome. Circ J 2003; 67: 312-
        316.
192. Brugada J, Brugada R, Antzelevitch C, et al. Long-term follow-up of individuals with the electrocardiographic pattern of right bundle-branch block and
        ST-segment elevation in precordial leads V1 to V3. Circulation 2002; 105: 73-78.
193. Kanda M, Shimizu W, Matsuo K, et al. Electrophysiologic characteristics and implications of induced ventricular fibrillation in symptomatic patients
        with Brugada syndrome. J Am Coll Cardiol 2002; 39: 1799-1805.
194. Eckardt L, Kirchhof P, Schulze-Bahr E, et al. Electrophysiologic investigation in Brugada syndrome; yield of programmed ventricular stimulation at two
        ventricular sites with up to three premature beats. Eur Heart J 2002; 23: 1394-1401.
195. Chen YH, Xu SJ, Bendahhou S, et al. KCNQ1 gain-offunction mutation in familial atrial fibrillation. Science 2003; 299: 251-254.
196. Yang Y, Xia M, Jin Q, et al. Identification of a KCNE2 gain-of-function mutation in patients with familial atrial fibrillation. Am J Hum Genet 2004; 75:
        899-905.
197. Gussak I, Brugada P, Brugada J, et al. Idiopathic short QT interval: a new clinical syndrome? Cardiology 2000; 94: 99-102.
198. Bjerregaard P, Gussak I. Short QT syndrome. Ann Noninvasive Electrocardiol 2005; 10: 436-440.
199. Priori SG, Pandit SV, Rivolta I, et al. A novel form of short QT syndrome (SQT3) is caused by a mutation in the KCNJ2 gene. Circ Res 2005; 96:
        800-807.
200. Gaita F, Giustetto C, Bianchi F, et al. Short QT Syndrome: a familial cause of sudden death. Circulation 2003; 108: 965-970.



心臓血管疾患における遺伝学的検査と遺伝カウンセリングに関する
ガイドライン(2011年改訂版)

Guidelines for Genetic Test and Genetic Councelling in Cardiovascular Disease(JCS 2011)
 
次へ